Tuesday, December 13, 2011

Gerak Lurus Berubah Beraturan (GLBB)



Setelah mempelajari materi pembelajaran ini diharapkan anda dapat menyimpulkan karakteristik gerak lurus berubah beraturan (GLBB) melalui percobaan dan pengukuran besaran-besaran terkait, serta menerapkan besaran-besaran fisika pada gerak lurus berubah beraturan dalam bentuk persamaan dan menggunakannya dalam pemecahan masalah...
Pengertian Gerak Lurus Berubah Beraturan (GLBB)
GLBB didefinisikan sebagai gerak suatu benda pada lintasan garis lurus dengan percepatan tetap. Maksud dari percepatan tetap yaitu percepatan percepatan yang besar dan arahnya tetap.
Grafik Percepatan Terhadap Waktu
Benda yang melakukan GLBB memiliki percepatan yang tetap, sehingga grafik percepatan terhadap waktu (a-t) berbentuk garis mendatar sejajar sumbu waktu t.
Dibawah ini adalah animasi tentang percepatan dalam format flash. Untuk menjalankannya komputer anda harus memiliki Flash Player.
Grafik Kecepatan Terhadap Waktu pada GLBB yang dipercepat
Pada GLBB yang dipercepat kecepatan benda semakin lama semakin bertambah besar. Sehingga grafik kecepatan terhadap waktu (v-t) pada GLBB yang dipercepat berbentuk garis lurus condong ke atas dengan gradien yang tetap. Jika benda melakukan GLBB yang dipercepat dari keadaaan diam (kecepatan awal =Vo = 0), maka grafik v-t condong ke atas melalui O(0,0), seperti gambar di bawah ini :
Jika benda melakukan GLBB dipercepat dari keadaan bergerak (kecepatan awal = Vo ≠ 0 ), maka grafik v-t condong ke atas melalui titik potong pada sumbu v, yaitu (0,Vo), seperti gambar di bawah ini :
Jika anda melempar batu vertikal ke atas, maka batu itu akan mengalami pengurangan kecepatan yang sama dalam selang waktu sama. Jadi batu itu dikatakan mengalami perlambatan atau percepatan negatif. Jadi pada GLBB diperlambat, benda mengawali gerakan dengan kecepatan tertentu dan selanjutnya selalu mengalami pengurangan kecepatan. Grafik kecepatan terhadap waktu untuk GLBB diperlambat akan berbentuk garis lurus condong ke bawah, seperti gambar di bawah ini.
Kecepatan pada suatu saat dari benda yang melakukan gerak lurus berubah beraturan dirumuskan sebagai berikut :
sedangkan untuk menghitung besar perpindahan yang dialami benda yang bergerak lurus berubah beraturan
Gerak Jatuh Bebas

Pengantar
Contoh gerak dengan percepatan (hampir) konstan yang sering dijumpai adalah gerak benda yang jatuh ke bumi. Bila tidak ada gesekan udara, ternyata semua benda yang jatuh pada tempat yang sama dipermukaan bumi mengalami percepatan yang sama, tidak bergantung kepada ukuran, berat maupun susunan benda, dan jika jarak yang ditempuh selama jatuh tidak terlalu besar, maka percepatannya dapat dianggap konstan selama jatuh. Gerak ideal ini, yang mengabaikan gesekan udara dan perubahan kecil percepatan terhadap ketinggian, disebut gerak “jatuh bebas”.
Percepatan yang dialami benda jatuh bebas disebut percepatan yang disebabkan oleh gravitasi dan diberi simbol g. Di dekat permukaan bumi, besarnya kira-kira 9,8 m/s^2, dan berarah ke bawah menuju pusat bumi.
Persamaan Gerak Jatuh Bebas
Kita pilih kerangka acuan yang diam terhadap bumi, dengan sumbu y positip diambil vertikal ke atas. Dengan pilihan ini percepatan gravitasi g dinyatakan dengan sebuah vektor yang berarah vertikal ke bawah dalam arah sumbu y negatip. Persamaan gerak dengan percepatan tetap dapat diterapkan di sini, tinggal menggantikan x dengan y dan mengambil yo = 0.Persamaan gerak jatuh bebas adalah sebagai berikut:

Tuesday, December 6, 2011

fisika sma gerak melingkar

Gerak Melingkar Berubah Beraturan
Adalah gerak suatu benda dengan bentuk lintasan melingkar dan besar percepatan sudut/anguler (α) konstan.
Jika perecepatan anguler benda searah dengan perubahan kecepatan anguler maka perputaran benda semakin cepat, dan dikatakan GMBB dipercepat. Sebaliknya jika percepatan anguler berlawanan arah dengan perubahan kecepatan anguler benda akan semakin lambat, dan dikatakan GMBB diperlambat.

1. Percepatan Anguler (α)
Sebuah benda bergerak melingkar dengan laju anguler berubah beraturan memiliki perubahan kecepatan angulernya adalah :
Δω = ω2 – ω1

Dan perubahan waktu kecepatan anguler adalah Δt, maka di dapatkan :
∆ω = perubahan kecepatan sudut (rad/s)
∆t = selang waktu (s)
α = percepatan sudut/anguler (rads-2)

Sama halnya dengan Gerak Lurus Berubah Beraturan (GLBB), pada GMBB berlaku juga :
- Mencari  kecepatan sudut akhir (ωt) :               
  ωt = ω0 ± α.t
- Mencari posisi sudut / besar sudut  (θ) yang ditempuh:
  θ= ω0 t ± α.t2
  x = R. θ

  Dapat diperoleh juga :

  ωt2 = ω02 ± 2 α.θ
dimana : 
ωt = kecepatan sudut/anguler keadaan akhir(rad/s)
ω0 = kecepatan sudut/anguler keadaan awal (rad/s)
θ  =  besar sudut yang ditempuh (radian, putaran)
1 rpm = 1 putaran permenit                   
1 putaran = 360° = 2p rad.
x = perpindahan linier (m)
t  = waktu yang diperlukan (s)
R = jari-jari lintasan (m)

2. Percepatan Tangensial (at)
Pada gerak melingkar berubah beraturan selain percepatan sentripetal (as) juga mempunyai percepatan tangensial (at).

Percepatan Tangensial (at) diperoleh :

  maka :  at =  . R  dengan arah menyinggung lintasan.
                    
Partikel P memiliki komponen Percepatan :
 a =  at  +  as ,                  dimana  at tegak lurus as ( as at )
Besar Percepatan Linier Total partikel titik P :
                    
at  = percepatan tangensial (ms-2)
as  = percepatan sentripetal (ms-2)
a  = percepatan total (ms-2)
Jika as =    dan maka didapat :
Percepatan total (a) :
                                              
dimana
 V = kelajuan linier (m/s)
 R = jari-jari lintasan (m)
  = percepatan sudut (rad s-2)
Semua benda bergerak melingkar selalu memiliki percepatan sentripetal, tetapi belum tentu memiliki percepatan tangensial.

Percepatan tangensial hanya dimiliki bila benda bergerak melingkar dan mengalami perubahan kelajuan linier.

Benda yang bergerak melingkar dengan kelajuan linier tetap hanya memiliki percepatan sentripetal, tetapi tidak mempunyai percepatan tangensial (at = 0 ).
Contoh soal Konsep Gerak Melingkar Berubah Beraturan:
Sebuah roda mobil sedang berputar dengan kecepatan sudut 8,6 rad/s. Suatu gesekan kecil pada poros putaran menyebabkan suatu perlambatan sudut tetap sehingga akhirnya berhenti dalam waktu 192 s. Tentukan :
  1. Percepatan sudut
  2. Jarak yang telah ditempuh roda dari mulai bergerak sampai berhenti (jari-jari roda 20 cm)
Pembahasan :

Diketahui : ω0= 8,6 rad/s

                  ωt = 0 rad/s

                 t = 192 s
                 R = 10cm= 0,1 m
Ditanya    : a.
                  b. x
Jawab :
a.   
            = - 0,045 rads-2                                           
b.     
           = (8,6).(192) + (-0,045).(192)2

           =  826 rad

 
        x = R.θ

           = (0,1m),(826)

           = 82,6 m


Ayunan Konis
Ayunan Konis (Ayunan Kerucut) adalah putaran sebuah benda yang diikat pada seutas tali  yang panjangnya ujung atas tali diikat pada satu titik tetap dan benda diputar mengitari permukaan membentuk kerucut.
Gaya yang bekerja adalah Tx sebagai gaya sentripetal yang menyebabkan benda bergerak melingkar beraturan pada bidang horizontal.
Tx = Fs
Pada Sumbu Y :
Benda tidak bergerak,maka sesuai hukum I Newton.
Fy = 0
Tcosθ – mg = 0
T cos θ = mg  ....... (2)
Dari pers (1) dan (2) diperoleh :
        
     dimana
     V = kelajuan ayunan(m/s)    
      g = percepatan gravitasi (ms-2)
     R = jari-jari (m)
     θ = besar sudut putar(rad)

Contoh soal Ayunan Konis/kerucut:
Seutas tali dengan panjang 1 m, ujung atasnya dipegang dan ujung bawah dikaitkan ke benda bermassa 100 g.Kemudian tali diputar sehingga benda bergerak melingkar horisontal dengan jari-jari lingkaran 0,5 m. Hitunglah :
a. besar tegangan tali
b. kelajuan linier benda

Pembahasan :

Diketahui : L =1 m
R = 0,5 m
m = 100g = 0,1 kg

Ditanya   :
a. T
b. V
Jawab :

                          
                    (a)                                                  (b)                                 (c)

        
              
Berdasarkan gambar (b) : tan θ =  = 0,58 , cos θ =
a. Ty = mg                                                .       
T cos θ = (0,1).(10)                                         
T =  N                                             
b.
         = 1,70 m/s